

The book was found

Digital Design And Computer Architecture, Second Edition

Synopsis

Digital Design and Computer Architecture, Second Edition, takes a unique and modern approach to digital design, introducing the reader to the fundamentals of digital logic and then showing step by step how to build a MIPS microprocessor in both Verilog and VHDL. This new edition combines an engaging and humorous writing style with an updated and hands-on approach to digital design. It presents new content on I/O systems in the context of general purpose processors found in a PC as well as microcontrollers found almost everywhere. Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, the book uses these fundamental building blocks as the basis for the design of an actual MIPS processor. It provides practical examples of how to interface with peripherals using RS232, SPI, motor control, interrupts, wireless, and analog-to-digital conversion. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. There are also additional exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing, plus a new appendix on C programming to strengthen the connection between programming and processor architecture. This new edition will appeal to professional computer engineers and to students taking a course that combines digital logic and computer architecture. Updated based on instructor feedback with more exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing. Presents digital system design examples in both VHDL and SystemVerilog (updated for the second edition from Verilog), shown side-by-side to compare and contrast their strengths. Includes a new chapter on C programming to provide necessary prerequisites and strengthen the connection between programming and processor architecture. Companion Web site includes links to Xilinx CAD tools for FPGA design, lecture slides, laboratory projects, and solutions to exercises. Instructors can also register at textbooks.elsevier.com for access to: Solutions to all exercises (PDF), Lab materials with solutions, HDL for textbook examples and exercise solutions, Lecture slides (PPT), Sample exams, Sample course syllabus, Figures from the text (JPG, PPT)

Book Information

Paperback: 712 pages

Publisher: Morgan Kaufmann; 2 edition (August 7, 2012)

Language: English

ISBN-10: 0123944244

ISBN-13: 978-0123944245

Product Dimensions: 9.2 x 7.5 x 1.4 inches

Shipping Weight: 3.2 pounds (View shipping rates and policies)

Average Customer Review: 4.4 out of 5 stars 50 customer reviews

Best Sellers Rank: #32,787 in Books (See Top 100 in Books) #4 in Books > Computers & Technology > Hardware & DIY > Microprocessors & System Design > Microprocessor Design #6 in Books > Computers & Technology > Programming > Software Design, Testing & Engineering > Logic #8 in Books > Engineering & Transportation > Engineering > Electrical & Electronics > Circuits > Design

Customer Reviews

"Intended as a course text for college or university level students, this book would serve just as well for anyone who just wants to learn about computer architecture or design. It stands as one of the best introductions to the subject and seems ideal for anyone wanting to learn digital design with no prior knowledge. The time investment would be handsomely rewarded and the range of topics covered, as well as the clear explanation of trickier issues, is extremely impressive." --BCS.org, April 2013

"Harris and Harris have taken the popular pedagogy from Computer Organization and Design down to the next level of refinement, showing in detail how to build a MIPS microprocessor in both Verilog and VHDL. Given the exciting opportunity that students have to run large digital designs on modern FGPAs, the approach the authors take in this book is both informative and enlightening."

--David A. Patterson, University of California at Berkeley, Co-author of Computer Organization and Design

"Developed at Harvey Mudd College, this undergraduate textbook introduces combinatorial logic and sequential logic circuit design, describes the computer's microarchitecture that connects hardware with software, and explains how to build a MIPS microprocessor." --Reference and Research Book News, February 2013

Digital Design and Computer Architecture Second Edition David Money Harris and Sarah L. Harris

"Harris and Harris have taken the popular pedagogy from Computer Organization and Design down to the next level of refinement, showing in detail how to build a MIPS microprocessor in both Verilog and VHDL. Given the exciting opportunity that students have to run large digital designs on modern FGPAs, the approach the authors take in this book is both informative and enlightening." •David A. Patterson, University of California at Berkeley, Co-author of Computer Organization and Design

Digital Design and Computer Architecture takes a unique and modern approach to digital design.

Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, Harris and Harris use these fundamental building blocks as the basis for what follows: the design of an actual MIPS processor. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. By the end of this book, readers will be able to build their own microprocessor and will have a top-to-bottom understanding of how it works. Harris and Harris have combined an engaging and humorous writing style with an updated and hands-on approach to digital design.

I bought this book after I was 6 chapters deep into Fundamentals of Logic Design 7th Ed. This book is the one you want to learn from. It explains things concisely, provides motivation and distinction between concepts, while remaining making you laugh. It will not provide you with everything you will need for an introductory course in Digital Logic Design, but I firmly believe that this book, along with Wikipedia (or the use of a search engine for diagrams) will do a much better job than that disgusting FLD 7th Ed.

I'm a veteran software engineer, but new to FPGAs. I am not an electrical engineer, and only had a little exposure to digital logic in college. This book is a great introduction to FPGAs and HDL. The writing style and comic illustrations make it very approachable - indeed, fun to read. The implementation of a MIPS processor seems MUCH more thorough than I've seen elsewhere. I'm still working through it, and still struggling with some details. The difference between blocking and non-blocking assignment wasn't made as clear as I'd like. I found this was better addressed in Pong Chu's FPGA Prototyping By Verilog Examples. I recommend that book as well; the two are very complimentary.

This is one of very few (arguably the only one) texts that combines and integrates digital design with actual architecture-- high and detail level. For the new (2nd) 2013 edition, Harris and Harris still teach simpler/ elegant systems that beginning Engineers and hobbyists love like MIPS and PIC 32, however they also add very recent and modern design and implementation solutions including parallel and multicore processors, the x86, multithreading, out of order and superscalar operations and branch prediction, to name a few. These topics are not only state of the art, but normally covered in grad rather than undergrad courses. The thorny issues of parallel programming start at the assembly level, and it is astonishing and refreshing that these authors integrate methods as high level as embedded C and as basic as the digital circuits that implement assembly, and then relate

them to considerations like temperature, memory, component sharing of workloads (the GPU often doubles as a CAS implementer or APU in these days where "math coprocessors" have been eliminated), etc. Every Engineer and hobbyist knows that getting a serious shot at a patent means implementation beyond simulation. That is where this new edition really shines. Other texts are out of date in a few months-- Harris and Harris give web and manufacturer resources that are available NOW (we checked), from design to finished boards. The authors also assume that after you spent your entire budget on this book you will appreciate cheap, open source solutions to getting to that million dollar patent. They don't disappoint-- the "lab" includes cheapware and freeware in the form of IDEs/SDKs like Quartus II, MPLAB and Synplify, then take your favorite HDL (Verilog OR VHDL) and move from IDE output to code. Finally, the authors give altera alternatives in boards like the DE2 that are specifically designed to execute educational, developmental and student code-- as well as hobbyists! A REALLY cool feature if you're getting into this as a career-- each chapter has sample interview questions for your next job. Like good programming books, the authors CARE that you get that job and include examples of what you'll be asked, with great answers on their support websites. All in all, a GREAT update to their first trend setting text, and a hands on manual on "how to" build your own chipset. If you're an OOP person you might be shocked that they cover C so much, but you've got to realize that "high level" at the circuit to assembly level is STILL C, and not so much Ada, Python, C# or Java (yet). Some other reviews around the web and in previous editions zinged them about this, but those reviewers aren't in the real world-- even for the most modern 2013 luxury autos with 60+ embedded chips, when designers go beyond assembly, they still default to C. Just because it's not OOP doesn't mean it's dead! If your own design prefers Python, or you're a JAVA junkie, fret not-- there are plenty of libraries that will handshake with assembly since embedded is the wave of the future, and this text is just as relevant. Eiffel even has a plug in that you can run on Visual Studio, and "lunch" off of your C# SDK to debug a second language-- although, granted, they are both OOP. NOTE FOR EDUCATORS: If you're a Junior College ID or exec/ dept. head, you might consider using this book as the basis for a year long course on circuit design to either prepare your grads for an AS/AA in electronics, or as a step to the EE. Once the grad gets into the real world of multi core, they will quickly find that "it's about the memory, stupid" that causes most performance challenges-- on board being heat and size costly, off board being time and speed costly, with cpu "work arounds" surprisingly more common than memory innovations-- a PERFECT field for that new patent. Many colleges are getting into "game programming" curricula because they offer an applied exposure to math, OOP, etc. This book gives you a non-herd alternative for your school-- with labs that ROCK. I'm an ID at ClassPros, and the

schools at which we set up circuit design courses have even used the strategy to partner with name brand 4 year colleges in continuing on to the EE for the brightest students. GET THIS BOOK, and then think about how magnificently it would fit in such a curriculum!5 Stars-- a great start to getting that award-winning, financially rewarding patent on your new chip design, OR introducing a sim lab oriented, fun-project, high STEM curriculum item to your school-- go for it!

I used this book as a supplement for my computer architecture class. It does a great job of walking the student through everything from the basic construction of a transistor, to a complete microarchitecture, to programming. The writing style is precise, the knowledge contained in the book is thorough, and the exercises and examples are challenging. This is a beast of a textbook. Comparing it to the main textbook we used in class (Lobur, 2002), I think the writing from Harris & Harris is better and the examples are clearer. They also cover the material differently. Harris & Harris spends a lot more time on the physical aspects of digital circuit design, while Lobur spends more time on various other higher-level concepts such as compressing data for transmission, magnetic data storage, etc.

I took a digital design class and hated the book. The material is dry in nature, so there's not much you can do to make an enticing design/architecture book. I'm in computer architecture now, and my school is using this book for the first time. I freaking love it. Something about it makes me want to read the whole thing. The art really takes away any intimidation, and the lessons are very concise. Some might feel that there is not enough info in here, but I say "that's what teachers are for!" Anyways, water spilled on my copy and I almost cried. I think I'm going to keep it forever.

I find this book teaches the subject very well. Viewing on a Kindle is not easy as the lessons taught discuss diagrams and graphics. the graphics and diagrams don't display on the same page, doesn't matter if I view on a computer, iPad or Kindle. To fully grasp the concepts one must view the graphics on another device such as a computer or iPad while reading on another device. I am glad the publishers allowed us to have copies on multiple devices. After being in my class for two-weeks, I am ordering a physical book. I am glad I have the Kindle version as it allows searching, just wish they included community notes!

Covers plenty of material, but the trade-off is that the early chapters on digital logic lack depth. I used another book -- Fundamentals of Logic Design -- to fill in some gaps. Nevertheless, the

solutions PDF for this book, available for free, is very extensive and extremely helpful.

College book, however very interesting on its own. If you're interested in this, look up various courses on line from universities to practice.

[Download to continue reading...](#)

Digital Logic Design and Computer Organization with Computer Architecture for Security Computer Organization and Design MIPS Edition, Fifth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design) Computer Organization and Design, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design) Digital Design and Computer Architecture, Second Edition Self-Checking and Fault-Tolerant Digital Design (The Morgan Kaufmann Series in Computer Architecture and Design) Digital Design and Computer Architecture: ARM Edition Foundations of Analog and Digital Electronic Circuits (The Morgan Kaufmann Series in Computer Architecture and Design) Digital Design and Computer Architecture 1st Grade Computer Basics : The Computer and Its Parts: Computers for Kids First Grade (Children's Computer Hardware Books) inside: Architecture and Design: A guide to the practice of architecture (what they don't teach you in architecture school) See MIPS Run, Second Edition (The Morgan Kaufmann Series in Computer Architecture and Design) Digital Drawing for Landscape Architecture: Contemporary Techniques and Tools for Digital Representation in Site Design Skew-Tolerant Circuit Design (The Morgan Kaufmann Series in Computer Architecture and Design) Digital Storytelling: Capturing Lives, Creating Community (Digital Imaging and Computer Vision) Graphic Design Success: Over 100 Tips for Beginners in Graphic Design: Graphic Design Basics for Beginners, Save Time and Jump Start Your Success (graphic ... graphic design beginner, design skills) Bitcoin Basics: Cryptocurrency, Blockchain And The New Digital Economy (Digital currency, Cryptocurrency, Blockchain, Digital Economy) Photography: DSLR Photography Secrets and Tips to Taking Beautiful Digital Pictures (Photography, DSLR, cameras, digital photography, digital pictures, portrait photography, landscape photography) Photography: Complete Guide to Taking Stunning,Beautiful Digital Pictures (photography, stunning digital, great pictures, digital photography, portrait ... landscape photography, good pictures) Logical Effort: Designing Fast CMOS Circuits (The Morgan Kaufmann Series in Computer Architecture and Design) Digital Integrated Circuit Design (The Oxford Series in Electrical and Computer Engineering)

[Contact Us](#)

DMCA

Privacy

FAQ & Help